
Towards Model-Based Automatic Testing of Attack
Scenarios

M. Zulkernine1, M.F. Raihan1, and M.G. Uddin2

1School of Computing, 2Department of Electrical and Computer Engineering
Queen’s University, Kingston, Ontario, Canada K7L 3N6

{mzulker,raihan,gias}@cs.queensu.ca

Abstract. Model-based testing techniques play a vital role in producing qual-
ity software. However, compared to the testing of functional requirements, these
techniques are not prevalent that much in testing software security. This paper
presents a model-based approach to automatic testing of attack scenarios. An
attack testing framework is proposed to model attack scenarios and test the sys-
tem with respect to the modeled attack scenarios. The techniques adopted in the
framework are applicable in general to the systems, where the potential attack
scenarios can be modeled in a formalism based on extended abstract state ma-
chines. The attack events, i.e., attack test vectors chosen from the attacks hap-
pening in real-world are converted to the test driver specific events ready to be
tested against the attack signatures. The proposed framework is implemented and
evaluated using the most common attack scenarios. The framework is useful to
test software with respect to potential attacks which can significantly reduce the
risk of security vulnerabilities.

1 Introduction

A software vulnerable to different attacks can lead to catastrophic failure which can
range from hindering normal service quality to causing dangers to human life. There-
fore, software systems should be tested whether they exhibit any attack behavior when
they are under potential attacks1. A software system under security testing is tested
for security vulnerabilities with respect to specific security requirements. Model-based
testing approaches provide techniques for testing system behavioral conformance to
specific functional requirements [1,2]. A model-based approach to security testing in-
volves developing models of security requirements and then testing security properties
of the modeled system by automatically generating test vectors [3,4]. Testing attack
behavior of a system involves modeling of attack scenarios and verifying the modeled
attack scenarios against automatically generated system events. Modeling attack sce-
narios requires incorporating attack system attributes to the model which might not be
present in a traditional modeling language. Moreover, specific testing techniques have
to be developed to test the system attack behavior with respect to the modeled attack
scenarios.

1 For brevity, the behavior exhibited by a system under attack is called the attack behavior of the
system throughout the paper.

B. Buth, G. Rabe, T. Seyfarth (Eds.): SAFECOMP 2009, LNCS 5775, pp. 229–242, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

230 M. Zulkernine, M.F. Raihan, and M.G. Uddin

In this paper, a framework is presented for automatic model-based testing of a system
with respect to potential attacks, where the attack behavior is assumed to be modeled us-
ing formalisms based on extended abstract state machines [6,8,9]. Attack scenarios are
modeled to represent system attack behavior representing states, conditions, and transi-
tions required to characterize the attacks. The attack scenarios are made executable by
developing a suitable attack signature generator. An attack signature includes necessary
specifications using states and transitions which are directly executable against the sys-
tem events for a particular attack. The framework provides an attack test driver which
generates attack signatures and tests system attack specific behavior with respect to the
modeled attack scenarios. The attack test driver automatically generates attack test vec-
tors, i.e., system events. The system events are converted to attack test driver specific
events before being tested against the attack scenarios. The attack test driver uses an
attack testing engine which employs a generic attack testing algorithm applicable for
various target systems. The framework is evaluated, and experimental results show the
efficacy of the framework in testing wide range of attacks.

The overview of the attack testing framework is provided in the next section. The
details of the attack testing process is presented in Section 3. Section 4 presents the
implementation and experiments. The related work are discussed in Section 5. Section
6 summarizes this work and future research directions.

2 Attack Testing Framework Overview

Figure 1 presents the proposed model-based attack scenario testing framework. Attack
scenarios are modeled in extended abstract machines (ASMs), where states are instru-
mented with specific attack attributes. ASMs incorporate attack variables in the state
machines [6,8,9]. The attack variables allow more specific descriptions of system at-
tributes corresponding to different attacks. An attack is modeled as a set of states and
transitions. States represent a snapshot of different system attributes during the course
of attacks. The transitions are labeled with system events that cause changes from one
state to another. A state transition can take place only if certain conditions associated
with the transition are satisfied. The system events need to take place in certain order
to make an attack successful. Once the system reaches a state under attack, an attack
report is generated (see example in Section 3.3).

The rest of the framework consists of three major modules: signature-base module,
sensor module, and main module (see Section 3.1). The three modules form the archi-
tecture of the attack test driver. Signature-base module provides the executable attack
test scenarios called attack signatures that are ready to be used for testing by the attack
test driver. The attack signature generator is used to produce attack signatures from the
modeled attack scenarios.

The sensor module generates system events for testing those against the modeled
attack scenarios. The attack test vectors are generated automatically from the system
events using the event generator. An attack scenario can have different representation
formats based on the target system environment. Therefore, the system events have to
be captured first in an appropriate format so that they can be tested against the modeled
attack scenarios. The task of the attack schemas is to read system events and provide a

Towards Model-Based Automatic Testing of Attack Scenarios 231

Attack Scenario
Specification

Signatures
Test
Attack

Security Testing

Attack
Schemas

Test

Mapper

Event Generator
Instances

Event

Attack

Attack
Report

Driver

MainSignature−base
Module

Sensor Module

Module

Test Engine
IDSpec: Attack

System Under

Modeling
Language

Attack

Modeled

Scenario

Attack

Generator
Signature

Fig. 1. Attack testing framework

way how they can used for testing. The test driver mapper converts the system events to
the attack test driver specific events.

The main module contains an attack testing engine (called IDSpec) that in general re-
quires two types of parameters: attack signatures and test driver specific system events.
IDSpec tests the system based on the modeled attack scenarios and generates a report
when an attack is found.

3 Testing Attack Scenarios

In this section, the testing process is described in detail following the proposed frame-
work. The attack test driver architecture is described in Section 3.1. The attack testing
engine of the architecture employs the CAAT (Context-Aware Attack Testing) algo-
rithm (see Section 3.2). The testing process is further illustrated using the DosNuke
attack in Section 3.3.

3.1 Attack Test Driver Architecture

The attack test driver consists of three principal modules (see Figure 2): signature-base,
sensor, and main. The modules are discussed in the following paragraphs.

Signature-Base Module. This module contains executable attack signatures that are
used by IDSpec to match the captured events with the signatures and to test potential
attacks. Based on the security requirements, high-level descriptions of attack scenar-
ios are developed. The attack scenarios are then modeled in ASMs. The attack signa-
ture generator implemented within this framework produces executable attack signature
plug-ins from the modeled attack scenarios. During the course of execution, the plug-
ins are loaded in the knowledge base of the attack test driver.

232 M. Zulkernine, M.F. Raihan, and M.G. Uddin

Host

Windows host

Unix host

Windows host

Windows audit TCP/IP network
packet sensorlog sensor

of attack scenario

}

Compilation

Audit
records

Network
packets

TCP/IP network

Signatures

Attack information

 . . .

Signature−base Module

generation
module

Main Module

Target System

Report

Attack Report

Sensor Module

test engine
IDSpec: Attack

Attack scenario{

attack scenario

Sensor plug−ins

Sensors

Sensor plug−ins

Attack signature plug−ins

Attack signature plug−ins

Executable attack
signature plug−ins Sensor plug−ins

signature plug−ins
Executable attack

High−level descriptions

Modeled

Fig. 2. Attack test driver architecture

Sensor Module. The attack test driver analyzes the events that take place in the sys-
tem and identify ongoing attacks. It is assumed that attacks will leave a trace in the
system activity logs. The attack signatures are written based on these events. Each log
has its own format (like Windows security log and tcpdump log files). Therefore, the
primary task is to read data from the event sources and convert those to the test driver
specific form that can be easily analyzed by IDSpec. Figure 2 shows the target system
considered in the testing process. The events from windows host are considered as audit
records, while the events from TCP/IP network are regarded as network packets. How-
ever, the framework is designed in such a way so that it can incorporate other types of
data sources (like Solaris BSM audit data) in its sensor module.

Main Module. The attack test driver collects events representing ongoing system activ-
ities from the sensor module. IDSpec analyzes the event streams and identifies whether
there is an attack in progress. For this purpose, IDSpec matches the description of an
executable attack scenario against the stream of events. Once an attack has been de-
tected, the report generation module notifies the administrator. The notification consists
of information having the time and date of an attack, the source of the attack, detailed
testing information regarding the attack, and the effects it has on the system under
test. IDSpec uses a generic attack testing algorithm, CAAT, presented in the following
section.

Towards Model-Based Automatic Testing of Attack Scenarios 233

sig sig

sen sen

sig

sen

(S
et

 o
f

tr
an

si
tio

ns
)

T

Event_
Dispatcher()

methods
Transition

S
(Set of states)

(S
et

 o
f

tr
an

si
tio

ns
)

T

Event_
Dispatcher()

methods
Transition

S
(Set of states)

(S
et

 o
f

tr
an

si
tio

ns
)

T

Event_
Dispatcher()

methods
Transition

S
(Set of states)

CAAT

ReadEvent()
ID

Sp
ec

ReadEvent()ReadEvent()

Driver Driver

Driver Driver Driver

specific events specific events

specific eventsspecific eventsspecific events

specific events
Driver

S
ig

S
to

re
S

en
S

to
re

. . .

. . .

. . .

sig1 sig2

sen1 sen2 senn

sign

Signatures

Sensors

. . .

1 2 n

1 2 n

Fig. 3. Attack test driver

3.2 Context-Aware Attack Testing

The CAAT algorithm is provided in Listing 1. The algorithm takes as input a set of n
attack signatures defined by Signatures= {sig1, sig2, . . . , sign}. The signature plug-ins
are provided by the signature-base module. Here, each sigi represents a particular attack
signature. During the course of execution of the attack test driver, each of the attack
signature plug-ins are loaded in a global storage space denoted by SigStore located
inside IDSpec. The second parameter of the algorithm is a set of m system events, E=
{e1, e2, . . . , em}, which are collected by the sensor modules. Here, each ei represents
a particular system event. Let Sensors be the set of p sensor plug-ins, Sensors= {sen1,
sen2, . . . , senp}, which capture events from the target system and convert them to test
driver specific event format as expected by IDSpec. This set forms the third parameter
of the CAAT algorithm. SenStore is a global storage space, where all the sensor plug-ins
from the set Sensors are instantiated and loaded during the initialization phase of the
attack test driver. IDSpec employs the algorithm, CAAT, matches the signatures from
SigStore against the driver specific system events from SenStore to test any ongoing
attack in the system. SigStore, SenStore, and the algorithm execution body of CAAT
form IDSpec.

234 M. Zulkernine, M.F. Raihan, and M.G. Uddin

The following paragraphs provide the details of the algorithm by referring to the
line numbers of Listing 1, while Figure 3 demonstrates the functionality of the test
driver. The algorithm first initializes the signature storage SigStore and the test driver
specific system event storage, SenStore. In the beginning, both sets are empty (Lines
01-02), and then SigStore is initialized by loading each of the attack signatures from the
set Signatures (Lines 03-05), and SenStore is initialized by loading the sensor plug-ins
from the set Sensors (Lines 06-08).

Listing 1. CAAT: Attack testing algorithm

Input: A set of n attack signature plug-ins (Signatures), a set of m events (E), and a set of p sensors (Sensors)
Output: Tests whether the events from E takes the system from a safe state to a state under attack by matching the events in
the attack steps defined in an attack signature. (T is set of transitions, F is state transition function, C is set of conditions, and
X is set of actions).

00. CAAT (Signatures, E, Sensors)
01. SigStore:= ∅
02. SenStore:= ∅
03. FOR EACH attack signature plug-in a ∈ Signatures DO
04. SigStore:= SigStore ∪ a
05. END FOR
06. FOR EACH sensor plug-in s ∈ Sensors DO
07. SenStore:= SenStore ∪ s
08. END FOR
09. WHILE TRUE DO
10. FOR EACH sensor plug-in s ∈ SenStore DO
11. EventInstance Ex := s.ReadEvent()
12. IF Ex = NULL THEN CONTINUE
13. FOR EACH signature plug-ins a ∈ SigStore
14. a.EventDispatcher (Ex)
15. END FOR
16. END FOR
17. END WHILE
18. EventDispatcher (EventInstance Ex)
19. FOR EACH transition t ∈ this.T
20. IF (Satisfies (Ex, t))
21. FOR EACH action statement x ∈ t.X
22. Execute (x)
23. END FOR
24. END IF
25. END FOR
26. Satisfies (EventInstane Ex, Transition t) returns Boolean
27. Boolean bResult:= FALSE
28. State X:= GetSourceState (t.F)
29. FOR EACH state instance x ∈ X DO
30. IF t.C holds for Ex bResult:= TRUE
31. END FOR
32. RETURN bResult

The next part of the algorithm is responsible for collecting events and performing anal-
ysis on the event stream to test any potential attack attempts. Each sensor plug-in pro-
vides an interfacing method ReadEvent(). This method captures data from the data
sources (e.g., Windows audit logs or TCP/IP networks), formats the data into test driver
specific events, and returns the events to their callers. The EventDispatcher()
method (Lines 13-14) matches each event in SenStore against each of the signa-
tures of SigStore. The details of the EventDispatcher() method are provided
in Lines 18-25. When the EventDispatcher()method receives an event, it checks

Towards Model-Based Automatic Testing of Attack Scenarios 235

SYN

SYN−ACK

ACK

URG=1

s0

s1
s2

s3

s4

Fig. 4. State transition diagram of the DoSNuke attack

all the possible transitions of current signature instance that could be fired by the event.
An event could fire a transition only if it satisfies the condition set of that transition
(Lines 19-20). This is checked by the Satisfies() method shown in Lines 26-
32. First, the method retrieves the source state of the transition by calling the method
GetSourceState() with the state transition function F as a parameter. Then, the
method checks if there exists any state variable instance in the source state that matches
with event attributes specified in the condition constraint set for that transition (Lines
29-31). Depending on the positive outcome of the decision, the signature plug-in exe-
cutes the set of actions associated with the transition (Lines 21-22). The set of action
statements include updating state variables, making a transition to the new state, or
generating an attack report in case of reaching the “state under attack”. Otherwise, the
current state remains unchanged.

3.3 The Testing Process Illustrated

We illustrate the testing process using the DosNuke attack. DoSNuke is a Denial of
Service (DoS) attack that exploits a bug in the Windows NT operating system of a
victim machine. At first, the attacker establishes a TCP connection to NETBIOS port
(port number 139) and then sends a series of packets with URG bit set. The URG bit is
set to represent out-of-band data (called “urgent data” in TCP) in a data stream. Figure 4
shows the state machine for the DoSNuke attack. Receiving a connection request packet
(SYN packet) from the attacker changes system state from s0 to s1. When the receiving
machine acknowledges the request with a SYN-ACK packet, the state changes from s1

to s2. Receiving acknowledgement from the attacker (ACK packet) establishes a TCP
connection between the victim and the attacker and causes the state to transit from state
s2 to s3. When the victim receives a TCP packet, destined to port 139, with URG bit
set, it takes the system to a compromised state, (i.e., s4).

While translating the modeled attack scenario to executable attack signature plug-
ins, the model is instrumented with necessary data structures as shown in Figure 5.
In this figure, the generic attack scenario model A has three states: S0, S1, and S2

with state variables SourceIP, SourcePort, AttackerIP, and AttackerPort. Moreover,
A defines three transitions T1, T2, and T3, each having the form of <F,C,X>. Each
state is implemented as a list, storing attack scenario instances, to facilitate the testing
of same type of attack taking place concurrently. Different values for state variables

236 M. Zulkernine, M.F. Raihan, and M.G. Uddin

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

SourceIP SourcePort

172.16.20.110

172.16.20.30

172.16.20.19

1225

139

80

S

T

E
ve

nt
D

is
pa

tc
he

r(
)

T2.C

T3.C

T1.C

T1.X

T2.X

T3.X

S0

S1

S2

T1

T2

T3

S0

S1

S2

M
od

el
ed

at
ta

ck
sc

en
ar

io
A

T1()

T2()

T3()

Fig. 5. Signature data structure

are stored in the list representing attack instances. For example, the three entries for
S1 (<172.16.20.110:1225>, <172.16.20.30:139>, and <172.16.20.19:80>) represent
that three instances of attack type A are in progress.

Similarly, each transition presented in the modeled attack scenario is mapped to ex-
ecutable instructions in the signature plug-in. The condition part of each transition ex-
ecutes the EventDispatcher()method in attack signatures. As mentioned before,
this method decides whether a captured system event is able to make changes in sys-
tem states. Figure 5 shows that the condition parts of T1 (T1.C), T2 (T2.C), and T3

(T3.C) are merged in the EventDispatcher() method. The action part of each
transition is mapped to a set of functions that are called by EventDispatcher()
upon satisfying the condition set for that transition. For example, if an event satisfies
T1.C, then the function T1 is called that executes the action statements corresponding
to that transition (i.e., T1.X). Therefore, CAAT provides the flexibility to test for mul-
tiple attacks of the same kind executed at the same time by providing event matching
capability to every attack signature in IDSpec. Upon the arrival of a particular system
event specific to an attack scenario, the corresponding attack signature is executed by
IDSpec. With the completion of an attack testing process, an attack report is generated.
The attack test driver keeps track of different attack instances as it analyzes each system
event with respect to the modeled attack scenarios. Figure 6 shows the DosNuke attack
testing process by providing a simulation of two simultaneous DosNuke attacks against
a victim machine.

Let the victim machine has IP address P = 172.16.20.100, and the attacker ma-
chines have IP addresses X = 172.16.115.234 and Y = 172.16.115.20. Let X and Y
attempt to carry out the DosNuke attack against host P . The TCP/IP packets that are
exchanged between these hosts are denoted as a tuple of the form <SourceIP, Source-
Port, Flag, DestIP, DestPort>, where SourceIP and SourcePort denote the sender’s IP
address and port number respectively, while DestIP and DestPort denote the receiver’s
IP address and port number respectively. Flag represents the type of the network packet.

Towards Model-Based Automatic Testing of Attack Scenarios 237

Event

<X, 1216, <X, 1216,

<X, 1216,

X, 1216>

<Y, 1510, <X, 1216,

<X, 1216,

<Y, 1510,

<X, 1216, <X, 1216,

<Y, 1510,

<Y, 1510,

<P, 139,

P, 139>
ACK

<Y, 1510,

<Y, 1510,

<X, 1216,

P, 139>

<X, 1216,

<Y, 1510,
P, 139>

<Y, 1510,

P, 139>

T
im

e

Attack states

P, 139>

P, 139>

P, 139>

P, 139>P, 139>

P, 139>

P, 139>

P, 139>

P, 139>

P, 139>

P, 139>

P, 139>

Y, 1510>

P, 139>

P, 139>

SYN−ACK

<X, 1216,

DosNuke Attack

<Y, 1510,
P, 139>
DosNuke Attack

SYN,

<P, 139,

SYN,

SYN−ACK,

ACK,

URG bit set,

URG bit set,

S0 S1 S2 S3 S4

Fig. 6. Testing for the DosNuke attack using CAAT

The DosNuke attack signature is executed when the corresponding system event is gen-
erated by the attack test driver. The first column of the table in Figure 6 represents
system events related to DosNuke attack scenario. The rest of the columns simulates
the different testing stages of the DosNuke attack showing successive states of the Dos-
Nuke attack signature. The different states represent different attack instances of the
DosNuke attack. Moving from left to right of the table needs transitions from one state
to the next state. A transition is fired upon the arrival of a corresponding system event
necessary to satisfy the condition. System events in the upper rows are generated before
the system events in the lower rows. For example, with the arrival of a SYN packet,
transition from states s0 to s1 is performed by the EventDispatcher() method.
A transition from states s1 to s2 is performed when the packet with SYN-ACK flag is
generated. The system attributes are updated according to every state transition. The
columns representing different states store respective system attributes related to the
DosNuke attack scenario.

4 Implementation and Experiments

The three modules of the attack test driver (signature-base, sensor, and main) are im-
plemented using C#.NET programming language. To specify attack scenarios, for the
sake of widespread applications and the execution capability, a security extension of
AsmL (Abstract State Machine Language) [8] called AsmLSec (Abstract State Ma-
chine Language for Security) [9] is used in this work. The attack signature generator

238 M. Zulkernine, M.F. Raihan, and M.G. Uddin

Table 1. Attack scenarios used in evaluating the framework

Attack Type Attack Name Short description

DoS

Land Using network packets with same source and destination address
DoSNuke Using network packets with TCP URG bit set
Teardrop Using mis-fragmented UDP packets
CrashIIS Malformed HTTP request causes IIS server to crash

Probe Queso Using seven network packets with odd combination of TCP flags

R2L Netcat Using a trojan to create backdoor on victim machine

U2R
Sechole Using DLL to add the user to administrator group
Yaga Hacking the registry adds the user to administrator group
Anypw Allows the attacker to logon to the system without a password

Data NTFSDos Allows the attacker access to NT partitions without authentication

implemented in this framework is an AsmLSec compiler. Flex [23] is used to generate
the lexical analyzer unit, while Bison is used for generating the parser of the AsmLSec
compiler. The output from the two phases are compiled and linked together using a C
compiler. The compiler produces the AsmL representation from the modeled AsmLSec
attack scenarios. The AsmL specification of the modeled attack scenarios is compiled
using the AsmL compiler to generate the signature plug-ins in the form of a Dynamic
Link Library (DLL).

Each event-capturing module for the sensor module is implemented as a shared
library (Dynamic Link Libraries) written in C#.NET language. Two DLLs are im-
plemented for the two event sensors: WinLogPlugin.dll for capturing Windows audit
log events and TCPIP.dll for network packets. During the initialization phase of the
attack test driver, it loads these plug-ins dynamically thus having the flexibility to
add a new plug-in for another type of data source in future. Each plug-in provides a
method, ReadEvent() that is invoked to fetch a captured event from the event gener-
ator according to the test driver specific event format. In case of WinLogPlugin.dll, the
function returns a Windows audit log entry, WinLogRecord. Similarly, TCPIP.dll cap-
tures TCP/IP network packets and returns a record of type FrameHeader representing
the captured ethernet frame.

The framework is evaluated for by modeling the following five most common cat-
egories of attack scenarios: Denial of Service attacks (DoS) are designed to disrupt a
host or network service; Remote to Local attacks (R2L) let an attacker gain local access
to a machine even though he or she does not have an account on that machine; User to
Root attacks (U2R) allow a local user on a machine to gain administrative privileges;
Probe attacks scan a network of hosts to discover information such as IP addresses,
ports, and host operating system types; and Data attacks access to restricted files [7].
Table 1 presents the the attacks that are used to evaluate the framework. Experimen-
tal results show the effectiveness of the framework in testing those attacks against the
target system.

5 Related Work

Blackburn et al. [4] propose a model-based approach to automate software security test-
ing. The generated test vectors from the security specifications can be executed against
Oracle and Interbase database servers. The security specification is written in SCR

Towards Model-Based Automatic Testing of Attack Scenarios 239

(Software Cost Reduction) with SCRtool. SCR test specification is converted to T-VEC
test specification using an SCR-to-T-VEC translator. A T-VEC tool is used to generate
test vectors from T-VEC test specifications. Chandramouli and Blackburn [3,5] con-
tinue this model-based security testing approach by combining the security behavioral
model and the test vectors with product interface specifications. The interface speci-
fication is provided using an object mapping file which maps between the behavioral
model variables and the interface elements. The model-based testing approach in this
paper tests a system attack behavior against a state-based formalism of the modeled
attack scenarios. While their security testing processes use the SCR-to-T-VEC transla-
tor to translate the SCR specification into T-VEC test specification, the attack testing
process of this work generates different system events and automatically converts them
into attack-driver specific test vectors, i.e., attack events.

Potter and McGraw [10] argue in favor of risk-based security testing which should
be employed while the software is still under development. Software penetration testing
technique plays a vital role in security testing, where the software is tested against
all kinds of possible attacks and probing. Arkin et al. [11] propose that a penetration
test must be structured according to perceived risk. Stytz and Banks [12] suggest an
intelligent system that can test a software system while it is still in the development
phase by presenting the basic concept of dynamic security testing. They argue that a
software under development should be tested against all kinds of attacks. The risk-
based testing, penetration-based testing, and dynamic security testing approaches have
influenced the development of the attack testing framework provided in this paper. The
framework can be employed early in the software development life cycle to test a system
under development.

A security-critical system designed in UMLsec (Unified Modeling Language ex-
tension for security) can be tested for flaws automatically using effective tool sup-
port [13]. The UMLsec models have to be imported in an internal repository which
is an XMI-specific data-binding library for the XML representation of an UML dia-
gram. The access to this repository is provided by JMI (Java Metadata Interface) which
can be used for static and dynamic checking of the model. For the dynamic analysis
part, the UMLsec diagrams are translated into first-order logic formulas. Jürjens [14]
provides a list of tools supporting model-based testing where the security properties
are specified using UMLsec, and the model is verified automatically by a Prolog-based
attack generator against the system. The modeled attack behavior in this work is tested
against automatically generated system events. In this work, an automatic attack testing
framework is provided where attack scenarios are modeled in state-based formalism.
Executable attack signatures are generated from the modeled attack scenarios, and then
they are tested against automatically generated system events.

Allen et al. [18] propose an architecture for testing the security of network proto-
col implementations. A protocol specification is converted into a finite state diagram.
A valid state sequence is called a test template. Each test template accompanied with
valid data is termed as a test case or message. Valid messages are separated into relevant
blocks supported by protocol specifications and fuzzed to generate corrupted inputs to
reveal vulnerabilities in applications. In contrast, our work uses attack signatures and
matches attacks with incoming network packet sequences. Kosuga et al. [19] propose

240 M. Zulkernine, M.F. Raihan, and M.G. Uddin

an SQL (Standard Query Language) injection attack (SQLIA) testing framework named
Sania for the application development and debugging phase. Their approach initially
constructs parse trees of intended SQL queries written by developers. Terminal leafs
of parse trees typically represent vulnerable spots, which are filled with possible attack
strings. The difference between the initial parse tree and the modified parse tree gener-
ated from user supplied attack string results in warnings of SQLIAs. Salas et al. [20]
generate test cases that reveal security bugs of functional specification written in Ob-
ject Constrained Language (OCL). They perform testing of SQL injection attacks based
on the specification of login functionalities for web applications by injecting faults in
specifications. In contrast, our work tests attacks through AsmL specification. Simi-
larly, Wimmel et al. [21] generate test cases by mutating specification of cryptographic
protocol. The modification includes confusion of keys or secrets, missing or wrongly
implemented verification of authentication codes, etc. The implementation of the pro-
tocol is tested based on the mutated specification. Jayaram [22] proposes testing the
security of cryptographic protocol specified with UML state charts. The method gen-
erates initial test data sets that are adequate for control and data flow coverage criteria.
The resultant test set is measured for adequacy with respect to security mutants which
must be nullified by the generated test cases.

Tal et al. [15] propose vulnerability testing of frame-based network protocol im-
plementation, where the structure of a protocol data unit (PDU) is specified in a frame.
Their approach captures PDUs from client machines, mutates data fields of PDUs, sends
them back to the server, and observes whether the protocol daemon running in the server
crashes due to segmentation violation. Ghosh et al. [16] mutate the internal states of
program to detect vulnerabilities at runtime. They develop Fault Injection Security Tool
(FIST) which injects various types of faults such as corruption of boolean, integer, and
string variables, overwriting the return addresses of stacks. Du et al. [17] perform vul-
nerability testing of applications by perturbing environment variables during runtime
from initialization processes, file system inputs, network packets, etc. They propose
fault coverage-based test adequacy criteria. Ideally, the higher the fault coverage, the
more secure the application is.

6 Conclusions and Future Work

In this work, a framework is proposed which can test software for possible attacks
with respect to modeled attack scenarios. The architecture of the attack test driver is
presented by describing its different modules and their interactions. A generic attack
testing algorithm called CAAT (Context-aware Attack Testing) is presented. The algo-
rithm is employed by the attack test driver to test the target system with respect to the
modeled attack scenarios. The modeling and testing of attack scenarios are explained
using the DosNuke attack scenario as an example. The framework is evaluated by us-
ing the five categories of attacks: DoS, R2L, U2R, probe, and data attacks. The attack
testing engine compares the attack signature plug-ins against automatically generated
attack test vectors, i.e., system events.

This work contributes to the automatic testing of attack behavior of a system, where
the attack scenarios are modeled in a formalism based on extended abstract state

Towards Model-Based Automatic Testing of Attack Scenarios 241

machines. The proposed attack testing framework can also be used to test the software
under development with respect to potential attacks for discovering vulnerabilities early
in the software development life cycle. The framework is applicable for various types
of target systems and the most common attack scenarios. The attack testing algorithm,
CAAT, provides a generalized approach to testing which greatly improves the applica-
bility of the framework.

Attacks are of varying nature, and it is almost impossible to model and test all the
attacks against a particular system using any attack modeling language and a frame-
work. Most of the limitations and future research of this work are related to the current
implementation of the attack test driver and the expressive power of the attack scenario
modeling language. We will extend our work to cover more attack scenarios that the
current implementation of the attack test driver fails to test. Some attacks may be car-
ried out spanning over several login sessions or may be carried out after weeks. The
attack test driver cannot keep track of such attacks and therefore fails to test system
penetrations due to those attacks. Another type of attack that the driver cannot test is
when the same attacker logs in with a different username and each time carries out one
step of an attack. In future, AsmLSec grammar can be modified to express the varying
nature of many attack scenarios. Because of the variations of the attacks in different
systems and operating environments, it is not easy to measure the attack test coverage
of the proposed attack testing framework. However, the framework can be extended to
test more attacks.

Acknowledgment

This research work is partially funded by the Natural Sciences and Engineering Re-
search Council (NSERC) of Canada. We would also like to thank Hossain Shahriar of
Queen’s University, Canada for his helpful comments to improve this paper.

References

1. Dalal, S., Jain, A., Karunanithi, N., Leaton, J., Lott, C., Patton, G., Horowitz, B.: Model-
based testing in practice. In: Proc. of the Intl. Conf. on Software Engineering, USA, May
1999, pp. 285–294 (1999)

2. Rosaria, S., Robinson, H.: Applying models in your testing process. Information and Soft-
ware technology 42(12), 815–824 (2000)

3. Chandramouli, R., Blackburn, M.: Automated testing of security functions using a combined
model and interface-driven approach. In: Proc. of the 37th Annual Hawaii International Con-
ference, Hawaii, USA (January 2004)

4. Blackburn, M., Busser, R., Nauman, A., Chandramouli, R.: Model-based approach to secu-
rity test automation. In: Proc. of the 14th International Software and Internet Quality Week
Conference, San Francisco, USA (June 2001)

5. Chandramouli, R., Blackburn, M.: Security functional testing using an interface-driven
model-based test automation approach. In: Proc. of the 18th Computer Security Applications
Conference, Las Vegas, USA (December 2002)

242 M. Zulkernine, M.F. Raihan, and M.G. Uddin

6. Barnett, M., Grieskamp, W., Nachmanson, L., Schulte, W., Tillmann, N., Veanes, M.: To-
wards a tool environment for model-based testing with AsmL. In: Proc. of the 3rd Inter-
national Workshop on Formal Approaches to Testing of Software, pp. 252–266. Springer,
Heidelberg (2003)

7. MIT Lincoln Laboratory. DARPA Intrusion Detection Evaluation (2006),
http://www.ll.mit.edu/ist/ideval (accessed in April 2006)

8. Barnett, M., Schulte, W.: The ABCs of specification: AsmL, behavior, and components. In-
formatic (Slovania) 25(4), 517–526 (2001)

9. Raihan, M., Zulkernine, M.: AsmLSec: An extension of abstract state machine language
for attack scenario specification. In: Proc. of the 2nd International Conf. on Availability,
Reliability and Security, Vienna, Austria (April 2007)

10. Potter, B., McGraw, G.: Software security testing. IEEE Software Security & Privacy Maga-
zine 2(5), 81–85 (2004)

11. Arkin, B., Stender, S., McGraw, G.: Software penetration testing. IEEE Software Security &
Privacy Magazine 3(1), 84–87 (2005)

12. Stytz, M., Banks, S.: Dynamic software security testing. IEEE Software Security & Privacy
Magazine 4(3), 77–79 (2006)

13. Jürjens, J.: Sound methods and effective tools for model-based security engineering with
UML. In: Proc. of the 27th International Conference on Software Engineering, St. Louis,
USA, May 2005, pp. 322–331 (2005)

14. Jürjens, J., Fox, J.: Tools for model-based security engineering. In: Proc. of the 28th interna-
tional conference on Software engineering, Shanghai, China, May 2006, pp. 819–822 (2006)

15. Tal, O., Knight, S., Dean, T.R.: Syntax-based Vulnerabilities Testing of Frame-based Net-
work Protocols. In: Proc. of the 2nd Annual Conference on Privacy, Security and Trust,
Fredericton, Canada, October 2004, pp. 155–160 (2004)

16. Ghosh, A.K., O’Connor, T., McGraw, G.: An automated approach for identifying poten-
tial vulnerabilities in software. In: IEEE Symp. on Security and Privacy, USA, pp. 104–114
(1998)

17. Du, W., Mathur, A.: Testing for software vulnerabilities using environment perturbation. In:
Intl. Conf. on Dependable Systems and Networks, New York, USA, June 2000, pp. 603–612
(2000)

18. Allen, W., Chin, D., Marin, G.: A Model-based Approach to the Security Testing of Net-
work Protocol Implementations. In: Proc. of the 31st IEEE Conference on Local Computer
Networks, November 2006, pp. 1008–1015 (2006)

19. Kosuga, Y., Kono, K., Hanaoka, M., Hishiyama, M., Takahama, Y.: Sania: Syntactic and
Semantic Analysis for Automated Testing against SQL Injection. In: Proc. of the 23rd Annual
Computer Security Applications Conference, Miami, December 2007, pp. 107–117 (2007)

20. Salas, P., Krishnan, P., Ross, K.J.: Model-Based Security Vulnerability Testing. In: Proc. of
Australian Software Engineering Conference, Melbourne, Australia, pp. 284–296 (2007)

21. Wimmel, G., Jürjens, J.: Specification-based Test Generation for Security-Critical Systems
Using Mutations. In: George, C.W., Miao, H. (eds.) ICFEM 2002. LNCS, vol. 2495, pp.
471–482. Springer, Heidelberg (2002)

22. Jayaram, K.R.: Identifying and Testing for Insecure Paths in Cryptographic Protocol Imple-
mentations. In: Proc. of the 30th Annual International Computer Software and Applications
Conference, Chicago, USA, September 2006, pp. 368–369 (2006)

23. Aaby, A.: Compiler Construction using Flex and Bison, http://cs.wwc.edu/ (Ac-
cessed, April 2006)

http://www.ll.mit.edu/ist/ideval
http://cs.wwc.edu/

	Towards Model-Based Automatic Testing of Attack Scenarios
	Introduction
	Attack Testing Framework Overview
	Testing Attack Scenarios
	Attack Test Driver Architecture
	Context-Aware Attack Testing
	The Testing Process Illustrated

	Implementation and Experiments
	Related Work
	Conclusions and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

